Gap junction channels constructed of connexins (Cxs) are expressed by peripheral and secondary lymphoid organ-derived lymphocytes. These channels in the plasma membrane play key roles in a range of lymphocyte functions exemplified by the synthesis and secretion of Igs and cytokines and during transmigration across the endothelium. Most recently, their involvement in antigen cross-presentation has also been established. We report here for the first time the expression of mRNA and protein encoding Cx43 in mouse-derived CD4+ Th0, Th1, and Th2 lymphocyte subpopulations and demonstrate the establishment gap junction channel formation with primary macrophages in vitro. We show that this mode of direct communication is particularly favored in Th1-macrophage interactions and that LPS inhibits lymphocyte-macrophage cross-talk independently of the subset of lymphocyte involved. Our work suggests that gap junction-mediated communication can be modulated in the absence of specific antigenic stimulation. Therefore, a further mechanism featuring gap junction-mediated communication may be implicated in immune regulation.
Read full abstract