We previously characterized α3, a polypeptide that has a three times repeated sequence of seven amino acids (abcdefg: LETLAKA) and forms fibrous assemblies composed of amphipathic α-helices. Upon comparison of the amino acid sequences of α3 with other α-helix forming polypeptides, we proposed that the fibrous assemblies were formed due to the alanine (Ala) residues at positions e and g. Here, we characterized seven α3 analog polypeptides with serine (Ser), glycine (Gly), or charged residues substituted for Ala at positions e and g. The α-helix forming abilities of the substituted polypeptides were less than that of α3. The polypeptides with amino acid substitutions at position g and the polypeptide KEα3, in which Ala was substituted with charged amino acids, formed few fibrous assemblies. In contrast, polypeptides with Ala replaced by Ser at position e formed β-sheets under several conditions. These results show that Ala residues at position e and particularly at position g are involved in the formation of fibrous assemblies.