Abstract
In the present study, we hypothesized that a novel approach to promote vascularization would be to create injectable three-dimensional (3-D) scaffolds with encapsulated growth factor that enhance the sustained release of growth factor and induce the angiogenesis. We demonstrate that a 3-D scaffold can be formed by mixing of peptide-amphiphile (PA) aqueous solution with basic fibroblast growth factor (bFGF) suspension. PA was synthesized by standard solid phase chemistry that ends with the alkylation of the NH(2) terminus of the peptide. A 3-D network of nanofibers was formed by mixing bFGF suspensions with dilute aqueous solutions of PA. Scanning electron microscopy (SEM) observation revealed the formation of fibrous assemblies with an extremely high aspect ratio and high surface areas. In vitro and in vivo release profile of bFGF from 3-D network of nanofibers was investigated while angiogenesis induced by the released bFGF was assessed. When aqueous solution of PA was subcutaneously injected together with bFGF suspension into the back of mice, a transparent 3-D hydrogel was formed at the injected site and induced significant angiogenesis around the injected site, in marked contrast to bFGF injection alone or PA injection alone. The combination of bFGF-induced angiogenesis is a promising procedure to improve tissue regeneration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.