AbstractSnow-pack along the land-fast ice fringe off the north coast of Ellesmere Island was generally characterized by depth-hoar overlain by dense snow and wind slab. Mean snow depth in the study area was 0.54 m (1982-85) and the mean δ18O value of the snow-pack was -31.3˚/00. Isotope data were not obtained previously for this geographic region and, therefore, complement a previous study of δ18O variations in High Arctic snow (Koerner, 1979). The data are consistent with an Arctic Ocean moisture source. The δ18O profiles show seasonal variations, with winter snow being more depleted in 18O than fall and spring snow. However, the δ18O profiles are dominated by a trend to higher δ18O values with increasing depth. This is attributed to a decrease in δ18O values as condensation temperatures fall during the autumn-winter accumulation period. During this time, there is also a change from relatively open to almost complete ice cover in the Arctic Ocean. The change in evaporation conditions and consequent effect on δ values gives rise to a sharp discontinuity in the δ18O profiles and a bi-modal δ18O frequency distribution. The bi-modal distribution is reinforced by a secondary isotope fractionation that occurs during depth-hoar formation. This isotope effect leads to a wider δ18O range but does not significantly alter the mean δ18O value.
Read full abstract