In this study, a deep neural network structure is proposed for the classification of poisonous and harmful wild plants in fields. Furthermore, a novel metaheuristic weight bat-inspired algorithm is developed for training the devised deep neural network. The harmful wild plant dataset is obtained from the agricultural field contains the purslane plants and harmful plants. The feature of the plants extract with mean absolute deviation, the dataset is consists of four features, two classes information, and contains 3452 samples, one-third of these samples are classified as purslane plants. Firstly, the performance of the proposed weight bat-inspired algorithm based deep neural network is evaluated by using ten UCI data repository datasets and the obtained results are compared with state-of-the-art classification algorithms. Then, classification of the harmful wild plant dataset is performed, results of the proposed weight bat-inspired algorithm based deep neural network are compared to two categories of classification algorithms, including (i) the most well-known classification algorithms, including decision tree, k-nearest neighbors, backpropagation based deep neural network, naïve bayes, random forest, AdaBoost, and support vector machine; (ii) optimization-based deep neural network, including bat algorithm, genetic algorithm, particle swarm optimization, equilibrium optimizer, A bio-inspired based optimization algorithm, and salp swarm algorithm. The proposed weight bat-inspired algorithm based deep neural network has outperformed the most well-known classification algorithms and optimization-based deep neural network in terms of CA, FPR, REC, PRE, TNR, AUC, F1-M, and F-M by 0.980, 0.020, 0.980, 0.980, 0.980, 0.980, 0.980, and 0.980, respectively. The highest performance has indicated that the training of deep neural networks by the weight bat-inspired algorithm is proven to be a very effective and useful tool for the classification of poisonous and harmful wild plants.
Read full abstract