Preface. List of Contributors. 1 Renewable Catalytic Technologies - a Perspective (Rutger A. van Santen). 1.1 Introduction. 1.2 Economic and Societal Background. 1.3 Technology Options. 1.4 Process Options for Biomass Conversion. 1.5 Conclusions. References. 2 Lignocellulose Conversion: An Introduction to Chemistry, Process and Economics (Jean-Paul Lange). 2.1 Overview. 2.2 Introduction. 2.3 Chemistry and Processes. 2.4 Economics. 2.5 Summary and Conclusions. References. 3 Process Options for the Catalytic Conversion of Renewables into Bioproducts (Pierre Gallezot). 3.1 Overview. 3.2 Introduction. 3.3 The Biore.nery Concept. 3.4 Strategies for Biomass Conversion into Bioproducts. 3.5 Concluding Remarks. References. 4 Industrial Development and Application of Biobased Oleochemicals (Karlheinz Hill). 4.1 Overview. 4.2 Raw Material Situation. 4.3 Ecological Compatibility. 4.4 Examples of Products. 4.5 Perspectives. References. 5 Fine Chemicals from Renewables (Herman van Bekkum and Leendert Maat). 5.1 Introduction. 5.2 Vanillin. 5.3 Monoterpenes. 5.4 Alkaloids. 5.5 Steroids. 5.6 Enantioselective Catalysis. 5.7 Artimisinine. 5.8 Tamiflu. 5.9 Final Remarks. References. 6 Options for Catalysis in the Thermochemical Conversion of Biomass into Fuels (Sascha R. A. Kersten, Wim P. M. van Swaaij, Leon Le.erts, and Kulathuiyer Seshan). 6.1 Introduction. 6.2 Biomass as Feedstock for Fuels. 6.3 Composition of Biomass. 6.4 Biore.nery. 6.5 Biomass Pretreatment. 6.6 Thermochemical Conversion of Lignocelluloses. 6.7 Biomass Gasi.cation. 6.8 Liquefaction of Biomass. 6.9 Upgrading Pyrolysis Oil to Fuels. 6.10 Hydrolysis. 6.11 Underlying Approach for Catalyst Design. 6.12 Summary. References. 7 Thermal Biomass Conversion (Simone Albertazzi, Francesco Basile, Giuseppe Fornasari, Ferruccio Trifiro, and Angelo Vaccari). 7.1 Introduction. 7.2 Biomass Resources and Biomass Pre-treatment. 7.3 Biomass Combustion. 7.4 Biomass Gasi.cation. 7.5 Pyrolysis. 7.6 Fuels via Thermal Biomass Conversion. 7.7 Conclusions. References. 8 Thermal Biomass Conversion and NOx Emissions in Grate Furnaces (Rob J.M. Bastiaans, Hans A.J.A. van Kuijk, Bogdan A. Albrecht, Jeroen A. van Oijen and L. Philip H. de Goey). 8.1 Introduction. 8.2 Tunable Diode Laser Measurements of Biomass Kinetics. 8.3 Propagation of Thermal Conversion Fronts. 8.4 Gas-phase CFD Modeling of Grate Furnaces. 8.5 Conclusions. References. 9 Bioethanol: Production and Pathways for Upgrading and Valorization (Stephane Pariente, Nathalie Tanchoux, Francois Fajula, Gabriele Centi, and Siglinda Perathoner). 9.1 Introduction. 9.2 Production, a Short Overview. 9.3 Uses as Biofuel. 9.4 Bioethanol Upgrading and Valorization. 9.5 Conclusions. References. 10 Conversion of Glycerol into Traffic Fuels (Tiia S. Viinikainen, Reetta S. Karinen, and A. Outi I. Krause). 10.1 Introduction. 10.2 Glycerol. 10.3 Etheri.cation of Glycerol with Isobutene. 10.4 Improvements to Biodiesel Process. 10.5 Reforming of Glycerol. 10.6 Future Aspects. References. 11 Catalytic Transformation of Glycerol (Bert Sels, Els D'Hondt, and Pierre Jacobs). 11.1 Introduction and Scope. 11.2 Catalytic Dehydration of Glycerol and Acrolein Formation. 11.3 Etheri.cation of Glycerol via Catalytic Dehydration. 11.4 Catalytic Oxidation of Glycerol. 11.5 Catalytic Hydrogenolysis of Glycerol. 11.6 Glycerol Reforming and Production. 11.7 Miscellaneous Oxidation Reactions. 11.8 Conclusions. References. 12 Catalytic Processes for the Selective Epoxidation of Fatty Acids: More Environmentally Benign Routes (Matteo Guidotti, Rinaldo Psaro, Maila Sgobba, and Nicoletta Ravasio). 12.1 Introduction. 12.2 Non-catalytic Epoxidation Systems. 12.3 Homogeneous Catalytic Systems. 12.4 Chemoenzymatic Epoxidation Systems. 12.5 Heterogeneous Catalytic Systems. 12.6 Epoxidation of FAMEs Over Titanium-based Catalysts: The Skills in Milan. 12.7 Conclusions. References. 13 Integration of Biocatalysis with Chemocatalysis: Cascade Catalysis and Multi-step Conversions in Concert (Tom Kieboom). 13.1 Overview. 13.2 Introduction. 13.3 Types of Cascades. 13.4 Technologies for Cascades. 13.5 Conclusions. References. 14 Production and Fuel Cells as the Bridging Technologies Towards a Sustainable Energy System (Frank A. de Bruijn, Bert Rietveld, and Ruud W. van den Brink). 14.1 Introduction. 14.2 Production from Natural Gas. 14.3 Novel Processes for Production with CO2 Capture. 14.4 Conclusions and Catalytic Challenges. References. 15 Pathways to and Green (Gert J. Kramer, Joep P. P. Huijsmans, and Dave M. Austgen). 15.1 Introduction. 15.2 Energy Resource Availability. 15.3 Modes of Production and Distribution. 15.4 The Cost of Fuel. 15.5 Clean Hydrogen and the Scope for CO2 Reduction. 15.6 Coal and Biomass. 15.7 Conclusions. References. 16 Solar Photocatalysis for Production and CO2 Conversion (Claudio Minero and Valter Maurino). 16.1 Introduction. 16.2 The Photocatalytic Process. 16.3 Photoelectrochemical Cells. 16.4 New Materials. 16.5 Conclusions. References. Conclusions, Perspectives and Roadmap (Gabriele Centi and Rutger A. van Santen). 1 Introduction. 2 Driver for a Biomass Economy. 3 Main Issues and Perspectives on Bioenergy and Biofuels in Relation to Catalysis. 3.1 Biofuels. 3.2 Biore.neries. 3.3 Use of By-products Deriving from Biomass Transformation. 3.4 Biomass as Feedstock for Chemical Production. 3.5 Use of Solar Energy. 4 Conclusions. References. Index.