Abstract Graphite nuclear properties such as moderating power and absorption cross-section, are not as good as those of heavy water. But its pure form can be prepared. Its structural and thermal properties are good and it has a high thermal conductivity. The thermal neutron in graphite performs an average of 1,200 scattering collisions before it is absorbed. This very low absorption cross section makes graphite as an ideal material for applications in nuclear reactors. In the current research, graphite is assumed as a diffusive medium due to its low absorption cross-section (0.0035 b) and having a low mass close to the neutron mass. In this medium: Boron (10B), Cadmium (113Cd), Samarium (149Sm), Europium (151Eu), Hafnium (177Hf) and Gadolinium (157Gd), separately are also considered as neutron absorbers. The aim of this paper is obtaining the solitary wave form of reaction rate in graphite diffusive medium using these neutron absorbers.
Read full abstract