The dynamics of the CO2 emission from sandy soils in the course of the postagrogenic succession in the southern taiga zone were studied. We measured total emission from the soil surface and, separately, respiration from the litter and mineral soil horizons during the warm (snowless) seasons of 2010 and 2011 on differently aged fallow plots: 0 years (cropland) and 7, 23, 55, 100, and 170 years. It was demonstrated that changes in the CO2 emission in the course of the succession have a nonlinear pattern: the emission sharply increases in the first decade, then somewhat decreases, and then gradually increases again up to the maximum values. This is explained by the dependence of the rate of the emission on the soil carbon pools (humus + litter + underground phytomass) that are also subjected to nonlinear changes. Initially, the emission is mainly due to mineralization of labile organic substances added to the plowed soils in the form of organic fertilizers. Then, in parallel with a gradual increase in the pools of litter and underground phytomass, the total pool of soil organic carbon increases, and its role in the emission becomes more pronounced. The seasonal dynamics of the soil respiration are mainly controlled by the soil temperature; the soil moistening plays an important role only during the initial meadow stage of the succession.