Bacteria were once thought to be simple organisms, lacking the membrane-bound organelles found in eukaryotic cells. However, recent advancements in microscopy have changed this view, revealing a diverse array of organelles within bacterial cells. These organelles, surrounded by lipid bilayers, protein-lipid monolayers, or proteinaceous shells, play crucial roles in facilitating biochemical reactions and protecting cells from harmful byproducts. Unlike eukaryotic organelles, which are universally present, bacterial organelles are species-specific and induced only under certain conditions. This review focuses on the bacterial organelles that contain iron, an essential micronutrient for all life forms but potentially toxic when present in excess. To date, three types of iron-related bacterial organelles have been identified: two membrane-bound organelles, magnetosomes and ferrosomes, and one protein-enclosed organelle, the encapsulated ferritin-like proteins. This article provides an updated overview of the genetics, biogenesis, and physiological functions of these organelles. Furthermore, we discuss how bacteria utilize these specialized structures to adapt, grow, and survive under various environmental conditions.
Read full abstract