Moso bamboo forests, recognized as a distinctive and significant forest resource in subtropical China, contribute substantially to efficient carbon sequestration. The accurate assessment of the aboveground biomass (AGB) in Moso bamboo forests is crucial for evaluating their impact on the carbon balance within forest ecosystems at a regional scale. In this study, we focused on the Moso bamboo forest located in Shanchuan Township, Zhejiang Province, China. The primary objective was to utilize various data sources, namely UAV-LiDAR (UL), Sentinel-2 (ST), and a combination of UAV-LiDAR with Sentinel-2 (UL + ST). Employing the Boruta algorithm, we carefully selected characterization variables for analysis. Our investigation delved into establishing correlations between UAV-LiDAR characterization parameters, Sentinel-2 feature parameters, and the aboveground biomass (AGB) of the Moso bamboo forest. Ground survey data on Moso bamboo forest biomass served as the basis for our analysis. To enhance the accuracy of AGB estimation in the Moso bamboo forest, we employed three distinct modeling techniques: multivariate linear regression (MLR), support vector regression (SVR), and random forest (RF). Through this approach, we aimed to compare the impact of different data sources and modeling methods on the precision of AGB estimation in the studied bamboo forest. This study revealed that (1) the point cloud intensity of UL, the variables of canopy cover (CC), gap fraction (GF), and leaf area index (LAI) reflect the structure of Moso bamboo forests, and the variables indicating the height of the forest stand (AIH1, AIHiq, and Hiq) had a significant effect on the AGB of Moso bamboo forests, significantly impact Moso bamboo forest AGB. Vegetation indices such as DVI and SAVI in ST also exert a considerable effect on Moso bamboo forest AGB. (2) AGB estimation models constructed based on UL consistently demonstrated higher accuracy compared with ST, achieving R2 values exceeding 0.7. Regardless of the model used, UL consistently delivered superior accuracy in Moso bamboo forest AGB estimation, with RF achieving the highest precision at R2 = 0.88. (3) Integration of ST with UL substantially improved the accuracy of AGB estimation for Moso bamboo forests across all three models. Specifically, using RF, the accuracy of AGB estimation increased by 97.7%, with R2 reaching 0.89 and RMSE reduced by 124.4%. As a result, the incorporation of LiDAR data, which reflects the stand structure, has proven to enhance the accuracy of aboveground biomass (AGB) estimation in Moso bamboo forests when combined with multispectral remote sensing data. This integration serves as an effective solution to address the limitations of single optical remote sensing methods, which often suffer from signal saturation, leading to lower accuracy in estimating Moso bamboo forest biomass. This approach offers a novel perspective and opens up new possibilities for improving the precision of Moso bamboo forest biomass estimation through the utilization of multiple remote sensing sources.