Abstract. Climate change will bring about changes in meteorological and ecological factors that are currently used in global-scale models to calculate biogenic emissions. By comparing long-term datasets of biogenic compounds to modeled emissions, this work seeks to improve understanding of these models and their driving factors. We compare speciated biogenic volatile organic compound (BVOC) measurements at the Virginia Forest Research Laboratory located in Fluvanna County, VA, USA, for the year 2020 with emissions estimated by the Model of Emissions of Gases and Aerosols from Nature version 3.2 (MEGANv3.2). The emissions were subjected to oxidation in a 0-D box model (F0AM v4.3) to generate time series of modeled concentrations. We find that default light-dependent fractions (LDFs) in the emissions model do not accurately represent observed temporal variability in regional observations. Some monoterpenes with a default light dependence are better represented using light-independent emissions throughout the year (LDFα-pinene=0, as opposed to 0.6), while others are best represented using a seasonally or temporally dependent light dependence. For example, limonene has the highest correlation between modeled and measured concentrations using an LDF =0 for January through April and roughly 0.74–0.97 in the summer months, in contrast to the default value of 0.4. The monoterpenes β-thujene, sabinene, and γ-terpinene similarly have an LDF that varies throughout the year, with light-dependent behavior in summer, while camphene and α-fenchene follow light-independent behavior throughout the year. Simulations of most compounds are consistently underpredicted in the winter months compared to observed concentrations. In contrast, day-to-day variability in the concentrations during summer months are relatively well captured using the coupled emissions–chemistry model constrained by regional concentrations of NOX and O3.
Read full abstract