Abstract

Accurate measurement and estimation of forest carbon sinks and fluxes are essential for developing effective national and global climate strategies aimed at reducing atmospheric carbon concentrations and mitigating climate change. Various errors arise during forest monitoring, especially measurement instability due to seasonal variations, which require to be adequately addressed in forest ecosystem research and applications. Seasonal fluctuations in temperature, precipitation, aerosols, and solar radiation can significantly impact the physical observations of mapping equipment or platforms, thereby reducing the data’s accuracy. Here, we review the technologies and equipment used for monitoring forest carbon sinks and carbon fluxes across different remote sensing platforms, including ground-based, airborne, and spaceborne remote sensing. We further investigate the uncertainties introduced by seasonal variations to the observing equipment, compare the strengths and weaknesses of various monitoring technologies, and propose the corresponding solutions and recommendations. We aim to gain a comprehensive understanding of the impact of seasonal variations on the accuracy of forest map data, thereby improving the accuracy of forest carbon sinks and fluxes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.