Carbon sequestration and income generation are competing objectives in modern forest management. The climate commitments of many countries depend on forests as carbon sinks which must be quantified, monitored, and projected into the future. For projections we need tools to model forest development and perform scenario analyses to assess future carbon sequestration potentials under different management regimes, the expected net present value of such regimes, and possible impacts of climate change. We propose a scenario analysis software tool (GAYA 2.0) that can assist in answering these types of questions using stand level simulations, detailed carbon flow models and an optimizer. This paper has two objectives: (1) to describe GAYA 2.0, and (2) demonstrate its potential in a case study where we analyze the forest carbon balance over a region in Norway based on national forest inventory sample plots. The tool was used to map the optimality front between the carbon benefit and net present value. We observed changes in net present value for different levels of carbon benefit as well as changes in optimal management strategies. We predicted future changes in several forest carbon pools as well as albedo and illustrated the impact of gradual increase in forest productivity (i.e., due to climate warming). Having been updated and modernized from its previous version with increased attention to forest carbon and energy fluxes, GAYA 2.0 is an effective tool that offers multiple opportunities to perform various types of scenario analyses in forest management.