Gamma-hydroxybutyrate (GHB), an endogenous compound related to the neurotransmitter gamma-aminobutyric acid (GABA), is used as a therapeutic and recreational drug and as a "weapon" in drug-facilitated crimes. The very short window of detection of GHB in conventional matrices (blood and urine) makes necessary the use of alternative matrices like hair. Hair has a long window of detection and the possibility to perform segmental analysis, which makes it very useful for proving GHB intake. In the present work, a method for quantification of GHB in hair was developed and validated. Hair (10 mg) was washed twice with dichloromethane and then incubated at room temperature with Milli-Q water in an ultrasound bath for 30 min. Analysis was performed by UPLC-MS/MS using a CORTECS UPLC HILIC (1.6 μm), 2.1 × 100-mm column, and a gradient with acetonitrile and ammonium acetate (10 mM) at pH 6.0, with a total run-time of 10 min. For detection, a triple quadrupole mass spectrometer in ESI negative mode was used. The method was validated, following the criteria established in the "AAFS Standard Practices for Method Validation in Forensic Toxicology" guideline, obtaining satisfactory results for linearity (0.5-50 ng/mg), accuracy (95.0%-103.2%), imprecision (< 10.2%), limit of detection (0.1 ng/mg) and quantification (0.5 ng/mg), exogenous selectivity (no interferences), matrix effect (less than -44.2%), extraction efficiency (> 86.4%), process efficiency (> 46.1%), and autosampler stability (< 4.3%). The method was used for the analysis of 26 authentic hair samples, 25 from non-drug users, obtaining values between < LOQ and 6.25 ng/mg of endogenous GHB and 1 from a former GHB chronic user to prove abstinence.