We examined the physiological representation of the forelimb in the cuneate nucleus (CN) of forelimb-intact young adult rats (n = 38) as the first part in a series of studies aimed at understanding the possible role that CN plays in delayed cortical reorganization that follows forelimb amputation. Metabolic labeling with cytochrome oxidase (CO) and electrophysiological mapping were used to examine the relationship between the structural and functional organization of CN. CN is a cylinder-shaped structure that lies bilaterally in the brainstem and extends nearly 4 mm in the rostrocaudal direction. The forelimb is represented along the rostrocaudal extent. CN contains three zones; the rostral and caudal zones receive input largely from deep muscle and joint receptors and a middle zone, in the vicinity of the obex, receives input primarily from cutaneous receptors in the skin. The middle zone is somatotopically organized with the glabrous digits represented centrally, bordered on the medial side by ulnar wrist, ulnar forearm, and posterior upper arm representations; on the lateral side by radial wrist, radial forearm, and anterior upper arm representations; and on dorsal side by the dorsal digits and dorsal hand. The middle zone also contains well-defined CO-filled glomerular structures, called barrelettes, which are located within a homogenously stained field. The barrelettes are associated with the representation of the glabrous digits, with D5 represented most dorsal followed sequentially in a ventral-to-lateral direction by the representation of D4, D3, D2, and D1. The digit representations are topographically organized with the distal digit surface represented laterally with respect to the more medially lying proximal digit surface. The digit and palmar pads are also represented by barrelettes located on the medial side of CN. In contrast, the dorsal digit surfaces are represented dorsally and the dorsal hand is represented directly beneath the cuneate fasciculus, in a region devoid of barrelettes. The representations of the ulnar and radial wrist, forearm, and upper arm also lie within the homogeneously stained field in CN. The forelimb representation is bordered on the medial side by representation of trunk and hindlimb, and on the lateral side by representation of shoulder, ear, and head. While the present findings support and extend previous electrophysiological and anatomical studies of CN in the rat, they also provide a detailed physiological description of the functional organization of CN that is necessary for subsequent understanding of the functional reorganization of CN that may result following forelimb amputation.