To improve the forecasting accuracy of tourism demand through forecasting model and data sources, this paper takes the social network data as an entry point, and collects the social network data by the web crawler, then quantifies the data based on the sentiment analysis of the BERT model. This paper uses structured variables such as social network data, weather, holidays, etc. to build a tourism demand forecasting model based on Gradient Boosting Regression Trees. At last, take Huang Shan as example, use actual statistics of passenger terminal and social network data to do an empirical analysis of Huang Shan tourism demand forecasting. Compared with the existing model and introduce ablation study to verify the effectiveness of the considered factors. The result shows that the model based on social network data has improved the forecasting accuracy from the existing ones, ablation study shows social network data helps to improve the accuracy of tourism demand forecasting.
Read full abstract