El impacto de Google Trends en la previsión de viajes combinados y su evidencia relacionadaPropósitoDado que el uso de los datos de Google Trends es útil para mejorar la precisión de las predicciones, este estudio examina si el uso del índice de búsqueda web de Google Trends combinado con la agregación de relevancia puede mejorar la precisión del predictor.Diseño/metodología/enfoqueEl modelo predictivo gris genera predicciones bajo un único modelo, mientras que el modelomultivariado utiliza el indicador Google Trends como variable explicativa. Se generaron tresensamblajes generales, incluido el Modelo armónico único (CUGM), los ensamblajes de todos loscomponentes (CAGM) y la prueba de presencia de componentes con predicción (CSET). Laspredicciones individuales encada grupo luego se combinan utilizando métodos de correlación deuso común.RecomendacionesUtilizando el número de turistas en las cuatro ciudades más investigadas de Taiwán, los tresgrupos combinados se clasificaron según su precisión. Las pruebas incluidas muestran que losmodelos multivariados en escala de grises son importantes para la predicción. Además, losresultados de las pruebas muestran que el índice de Google Trends y las pruebas que incluyenmétodos de suma lineal son útiles porque los métodos combinados con CSET funcionan majorque los métodos combinados con CSET. CAGM y VCUG.Implicaciones practicesLa industria de viajes puede usar el índice de búsqueda web de Google Trends para desarrollarestrategias comerciales para atracciones basadas en un conjunto lineal de componentes.Autenticidad/valorCon el objetivo de mejorar la precisión de los pronósticos agregados, este estudio investiga larelación entre el índice de tendencias de Google y las expectativas generales de viaje junto con laevidencia global.Palabras claveDemanda de viajes, Experiencia global, Tendencias de Google, Predicción grisTipo de papelTrabajo de investigación
Read full abstract