Abstract

This article examines whether incorporating investors’ uncertainty, as captured by the conditional volatility of sentiment, can help forecasting volatility of stock markets. In this regard, using the Markov-switching multifractal (MSM) model, we find that investors’ uncertainty can substantially increase the accuracy of the forecasts of stock market volatility according to the forecast encompassing test. We further provide evidence that the MSM outperforms the dynamic conditional correlation-generalized autoregressive conditional heteroskedasticity (DCC-GARCH) model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.