Several technologies have been introduced into neurorehabilitation programs to enhance traditional treatment of individuals with Spinal Cord Injury (SCI). Their effectiveness has been widely investigated, but their adoption has not been properly quantified. The aim of this study is to assess the distribution of conventional (Treatment As Usual-TAU) and technology-aided (Treatment With Technologies-TWT) treatments conveniently grouped based on different therapeutic goals in a selected SCI unit. Data from 104 individuals collected in 29 months were collected in a custom database and categorized according to both the conventional American Impairment Scale classification and a newly developed Multifactor (MF) clustering approach that considers additional sources of information (the lesion level, the level of independence in the activities of daily living, and the hospitalization duration). Results indicated an average technology adoption of about 30%. Moreover, the MF clusters were less overlapped, and the differences in TWT adoption were more pronounced than in AIS-based clustering. MF clustering was capable of grouping individuals based both on neurological features and functional abilities. In particular, individuals with motor complete injuries were grouped together, whereas individuals with sensorimotor incomplete SCI were collected separately based on the lesion level. As regards TWT adoption, we found that in the case of motor complete SCI, TWT for muscle tone control and modulation was mainly selected (about 90% of TWT), while the other types of TWT were seldom adopted. Even for individuals with incomplete SCI, the most frequent rehabilitation goal was muscle tone modulation (about 75% of TWT), regardless of the AIS level, and technologies to improve walking ability (about 12% of TWT) and balance control (about 10% of TWT) were mainly used for individuals with thoracic or lumbar lesions. Analyzing TAU distribution, we found that the highest adoption of muscle tone modulation strategies was reported in the case of individuals with motor complete SCI (about 42% of TAU), that is, in cases when almost no gait training was pursued (about 1% of TAU). In the case of cervical motor incomplete SCI, compared to thoracic and lumbar incomplete SCI, there was a greater focus on muscle tone control and force recruitment in addition to walking training (38% and 14% of TAU, respectively) than on balance training. Overall, the MF clustering provided more insights than the traditional AIS-based classification, highlighting differences in TWT adoption. These findings suggest that a wider overview that considers both neurological and functional characteristics of individuals after SCI based on a multifactor analysis could enhance the personalization of neurorehabilitation strategies.