Previous article Next article On Linear Ordinary Differential Equations with Periodic CoefficientsKarl K. StevensKarl K. Stevenshttps://doi.org/10.1137/0114066PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1] K. K. Stevens, Masters Thesis, Parametric excitation of a viscoelastic column, Ph.D. Dissertation, University of Illinois, Urbana, 1965 Google Scholar[2] Lamberto Cesari, Asymptotic behavior and stability problems in ordinary differential equations, Second edition. Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Bd. 16, Academic Press Inc., Publishers, New York, 1963viii+271 MR0151677 (27:1661) 0111.08701 CrossrefGoogle Scholar[3] V. M. Staržinskii˘, A survey of works on the conditions of stability of the trivial solution of a system of linear differential equations with periodic coefficients, Amer. Math. Soc. Transl. (2), 1 (1955), 189–237 MR0073774 (17,484c) CrossrefGoogle Scholar[4] K. G. Valeev, On the solution and characteristic exponents of solutions of some systems of linear differential equations with periodic coefficients, J. Appl. Math. Mech., 24 (1960), 877–902 10.1016/0021-8928(60)90068-X MR0148970 (26:6466) 0104.05902 CrossrefGoogle Scholar[5] I. G. Malkin, Some problems in the theory of nonlinear oscillation, AEC Transl. 3766, 1956 Google Scholar[6] Raimond A. Struble and , John E. Fletcher, General perturbational solution of the harmonically forced van der Pol equation, J. Mathematical Phys., 2 (1961), 880–891 10.1063/1.1724236 MR0136824 (25:285) 0111.28802 CrossrefISIGoogle Scholar[7] Raimond A. Struble and , John E. Fletcher, General perturbational solution of the Mathieu equation, J. Soc. Indust. Appl. Math., 10 (1962), 314–328 10.1137/0110023 MR0149032 (26:6528) 0109.09501 LinkISIGoogle Scholar[8] Raimond A. Struble and , Steve M. Yionoulis, General perturbational solution of the harmonically forced Duffing equation, Arch. Rational Mech. Anal., 9 (1962), 422–438 10.1007/BF00253364 MR0136813 (25:274) 0108.09104 CrossrefISIGoogle Scholar[9] Raimond A. Struble, Nonlinear differential equations, International Series in Pure and applied Mathematics, McGraw-Hill Book Co., Inc., New York, 1961x+267 MR0130408 (24:A269) 0124.04904 Google Scholar[10] C. S. Hsu, On the parametric excitation of a dynamic system having multiple degrees of freedom, Trans. ASME Ser. E. J. Appl. Mech., 30 (1963), 367–372 MR0160990 (28:4199) 0127.30503 CrossrefGoogle Scholar[11] C. S. Hsu, Further results on parametric excitation of a dynamic system, paper, 64-APM-36, Appl. Mech. Div., ASME, 1964 Google Scholar[12] N. Kryloff and , N. Bogoliuboff, Introduction to Nonlinear Mechanics, Princeton University Press, Princeton, 1947 Google Scholar[13] Morris Marden, The Geometry of the Zeros of a Polynomial in a Complex Variable, Mathematical Surveys, No. 3, American Mathematical Society, New York, N. Y., 1949ix+183 MR0031114 (11,101i) 0038.15303 CrossrefGoogle Scholar[14] S. Lubkin and , J. J. Stoker, Stability of columns and strings under periodically varying forces, Quart. Appl. Math., 1 (1943), 215–236 MR0008982 (5,83d) 0063.03669 CrossrefGoogle Scholar Previous article Next article FiguresRelatedReferencesCited ByDetails Concepts, Methods, and ParadigmsNonlinear Structural Mechanics | 25 July 2012 Cross Ref The Nonlinear Theory of Arch-Supported StructuresNonlinear Structural Mechanics | 25 July 2012 Cross Ref Discretization MethodsNonlinear Structural Mechanics | 25 July 2012 Cross Ref Stability and Bifurcation of StructuresNonlinear Structural Mechanics | 25 July 2012 Cross Ref The Elastic Cable: From Formulation to ComputationNonlinear Structural Mechanics | 25 July 2012 Cross Ref Nonlinear Mechanics of Three-Dimensional SolidsNonlinear Structural Mechanics | 25 July 2012 Cross Ref The Nonlinear Theory of BeamsNonlinear Structural Mechanics | 25 July 2012 Cross Ref Elastic Instabilities of Slender StructuresNonlinear Structural Mechanics | 25 July 2012 Cross Ref The Nonlinear Theory of Curved Beams and Flexurally Stiff CablesNonlinear Structural Mechanics | 25 July 2012 Cross Ref The Nonlinear Theory of PlatesNonlinear Structural Mechanics | 25 July 2012 Cross Ref The Nonlinear Theory of Cable-Supported StructuresNonlinear Structural Mechanics | 25 July 2012 Cross Ref Parametric instabilities of the radial motions of non-linearly viscoelastic shells under pulsating pressuresInternational Journal of Non-Linear Mechanics, Vol. 47, No. 5 | 1 Jun 2012 Cross Ref Parametric vibrations of a viscoelastic beam (Maxwell model) under steady axial load and transverse displacement excitation at one endJournal of Sound and Vibration, Vol. 115, No. 2 | 1 Jun 1987 Cross Ref Stability of Limit Cycle Solutions of Reaction-Diffusion EquationsDavis CopeSIAM Journal on Applied Mathematics, Vol. 38, No. 3 | 12 July 2006AbstractPDF (2399 KB)Chapter 3 Properties of Ordinary Differential EquationsStability of Linear Systems: Some Aspects of Kinematic Similarity | 1 Jan 1980 Cross Ref Linear systems of ordinary differential equationsJournal of Soviet Mathematics, Vol. 5, No. 1 | 1 Jan 1976 Cross Ref Stochastic kinetic theory and turbulent heatingIl Nuovo Cimento B Series 10, Vol. 69, No. 1 | 1 Sep 1970 Cross Ref Parametric Excitation of a Non-Homogeneous Bernoulli-Euler BeamJournal of Mechanical Engineering Science, Vol. 10, No. 3 | 6 February 2006 Cross Ref Volume 14, Issue 4| 1966SIAM Journal on Applied Mathematics641-959 History Submitted:16 July 1965Published online:03 August 2006 InformationCopyright © 1966 © Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/0114066Article page range:pp. 782-795ISSN (print):0036-1399ISSN (online):1095-712XPublisher:Society for Industrial and Applied Mathematics
Read full abstract