AbstractThe manufacturing geometrical variability is a source of uncertainty, which cannot be avoided in the realization of machinery components. Deviations of a part geometry from its nominal design are inevitably present due to the manufacturing process. In the case of the aeroelastic forced response problem within axial compressors, these uncertainties may affect the vibration characteristics. For this reason, the impact of geometrical uncertainties due to the manufacturing process onto the modal forcing of axial compressor blades is investigated in this study. The research focuses on the vibrational behavior of an axial compressor rotor blisk. In particular, the amplitude of the forces acting as a source of excitation on the vibrating blades is studied. The geometrical variability of the upstream stator is investigated as input uncertainty. The variability is modeled starting from a series of optical surface scans. A stochastic model is created to represent the measured manufacturing geometrical deviations from the nominal model. A data reduction methodology is proposed in order to represent the uncertainty with a minimal set of variables. The manufacturing geometrical variability model allows to represent the input uncertainty and probabilistically evaluate its impact on the aeroelastic problem. An uncertainty quantification is performed in order to evaluate the resulting variability on the modal forcing acting on the vibrating rotor blades. Of particular interest is the possible rise of low engine orders due to the mistuned flow field along the annulus. A reconstruction algorithm allows the representation of the variability during one rotor revolution. The uncertainty on low harmonics of the modal rotor forcing can be therefore identified and quantified.
Read full abstract