Abstract
The introduction of mistuning in jet-engine bladed disks can lead to large changes in stability and forced response. Even small random mistuning (within the bounds of manufacturing tolerance) can lead to unacceptable response and high-cycle fatigue. Meanwhile, intentional mistuning may improve stability and forced response under manufacturing uncertainty. This paper presents a general framework for predicting forced response as a function of mistuning. Because the forced response problem is an almostsingular linear problem, its solution is highly nonlinear in the mistuning parameters. Our methods exploit symmetry arguments and eigenstructure perturbation to provide a method valid for any model. It is shown that, by perturbing eigenvectors in the numerator and the inverse of eigenvalues in the denominator (exploiting symmetry in both computations), we can accurately approximate the forced response as a function of mistuning. Results are demonstrated for a simple lightly damped model, and the consequent sharp nonlinear behavior is captured almost perfectly. We also show that intentional mistuning may guarantee improved stability and forced response under fixed manufacturing tolerances. Thus, intentional mistuning should be considered as a practical means of increasing safety and enhancing engine performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.