Abstract

Random mistuning always exists in bladed disk structures. The maximum blade forced response amplitudes are often much larger than those of their perfectly tuned counterparts, which leads to eventual failure via high cycle fatigue (HCF). Therefore, it is of great importance to predict and, ultimately, to reduce the blade forced response levels as a result of random mistuning. In this paper, intentional mistuning is introduced into a simplified 12-bladed disk model by varying the stiffness of the blades in periodic harmonic patterns. The individual and combined effects of intentional mistuning, coupling and damping are examined in the absence and presence of random mistuning through numerical study. It is found that there is some threshold value of intentional mistuning and coupling that leads to maximum mistuning effects and certain relations among intentional mistuning strength, integer harmonics, coupling and damping can suppress the response levels of mistuned bladed disks, which provides useful guidelines for safe and reliable designs of bladed disk systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.