The anisotropy of workpiece crystals becomes prominent as the uncut chip thickness approaches to the grain size of the workpiece material. As such, in mechanical micromachining, precision machining, and diamond turning operations, the cutting forces exhibit significant variations with crystallographic orientations. In this work, a crystal-plasticity based model is used to analyze the effects of cutting geometry, friction and crystallographic anisotropy when machining face-centered cubic (fcc) single-crystals using ideally sharp cutting edges. The model adapts and combines Bishop and Hill's crystal plasticity theory with Merchant's machining force model. The total power, including the shearing and friction powers, is minimized over allowable shear angles to determine the shear angle solution and associated specific energies. The model is validated using data from the literature for both aluminum and copper single crystals; a good match is observed between the model predictions and experimental data, indicating the model's capability to capture crystallographic anisotropy and symmetry. The validated model is used to analyze the effects of rake angle, friction, and crystallographic orientation on specific energies and shear angles. Subsequently, a further simplification to the model is proposed through the use of Merchant's shear-angle formula.
Read full abstract