Pneumatic artificial muscles (PAMs) are flexible actuators that can be contracted or expanded by applying air pressure. They are used in robotics, prosthetics, and other applications requiring flexible and compliant actuation. PAMs are basically designed to mimic the function of biological muscles, providing a high force-to-weight ratio and smooth, lifelike movement. Inflation and deflation of these muscles can be controlled rapidly, allowing for fast actuation. In this work, a continuum mechanics-based model is developed to predict the output parameters of PAMs, like actuation force. Comparison of the model results with experimental data shows that the model efficiently predicts the mechanical behaviour of PAMs. Using the actuation force–air pressure–contraction relation provided by the proposed mechanical model, a dynamic model is derived for a multi-link PAM-actuated robot manipulator. An adaptive fixed-time fast terminal sliding mode control is proposed to track the desired joint position trajectories despite the model uncertainties and external disturbances with unknown magnitude bounds. Furthermore, the performance of the proposed controller is compared with an adaptive backstepping fast terminal sliding mode controller through numerical simulations. The simulations show faster convergence and more precise tracking for the proposed controller.
Read full abstract