This paper reports the performance [intake, milk production, bodyweight and body condition score (BCS)] of cows managed under two feeding systems over 4 years (June 2005–May 2009) in south-west Victoria, Australia. The feeding systems were ‘Ryegrass Max’ (RM) a well managed perennial ryegrass pasture-based system stocked at 2.2 cows/ha, and a ‘Complementary Forage’ (CF) system based on perennial ryegrass, tall fescue and a double crop of winter-sown cereal and summer-sown brassica crops stocked at 2.82 cows/ha. There were no significant differences in milk production per lactation between feeding systems, with an average of 543 and 553 kg milk solids per cow (1246 and 1642 kg milk solids per ha) produced in the RM and CF systems, respectively. These production levels were 20.9 and 10.8% above pre-experimental model targets, respectively. The bodyweight and BCS of multiparous cows were not significantly different between the two feeding systems; however, bodyweight of heifers in early lactation declined more rapidly in the CF compared with RM feeding system. Over the 4-year study in the RM system pasture comprised 60% of total DM consumed (grazed + conserved), with 26% of the ration being concentrate and the balance being purchased hay supplements. In the CF system, home-grown forage contributed 57.9% of total DM consumed of which 46.6% was pasture (grazed + conserved) and 11.3% was from the double cropping system. These levels of home-grown forage consumption were lower than those predicted by the pre-experimental modelling, leading to higher than predicted levels of purchased concentrates and conserved forages being fed. The lower than expected levels of consumption of the forages produced in the double cropping system reflected both the low intake potential and moderate nutritive value of cereal silage, and the failure of establishment and subsequent low DM yields from the summer brassica crop. Further work is required to determine the risk of implementing CF in rain-fed dairy systems reflecting uncertainties in forage management planning and nutrient delivery to support high levels of milk production.