Foot-and-mouth disease (FMD) is a rapidly propagating infectious disease of cloven-hoofed animals, especially cattle and pigs, affecting the productivity and profitability of the livestock industry. Presently, FMD is controlled and prevented using vaccines; however, conventional FMD vaccines have several disadvantages, including short vaccine efficacy, low antibody titers, and safety issues in pigs, indicating the need for further studies. Here, we evaluated the efficacy of a novel bivalent vaccine containing zinc sulfate as an immunostimulant and FMD type O and A antigens (O PA2 and A YC, respectively) against FMD virus in mice and pigs. Zinc sulfate induced cellular immunity in murine peritoneal exudate cells (PECs) and porcine peripheral blood mononuclear cells (PBMCs) by increasing IFNγ secretion. Additionally, FMD vaccine containing O PA2 and A YC antigens and zinc sulfate induced early, mid-, and long-term immune responses in mice and pigs, and enhanced cellular and humoral immunity by regulating the expression of pathogen recognition receptors (PRRs), transcription factors, co-stimulatory molecules, and cytokines in porcine PBMCs from vaccinated pigs. Overall, these results indicated that the novel immunostimulant zinc sulfate induced potent cellular and humoral immune responses by stimulating antigen-presenting cells (APCs) and T and B cells, and enhanced long-term immunity by promoting the expression of co-stimulatory molecules. These outcomes suggest that zinc sulfate could be used as a novel vaccine immunostimulant for difficult-to-control viral diseases, such as African swine fever (ASF) or COVID-19.