Solid-state fermentation (SSF) can divert food waste from landfills and produce high-value products. This study was aimed to investigate the feasibility of using SSF and optimize the conditions of production of phytase by Aspergillus ficuum from potato waste. Different parameters including pH of the potato waste, inoculum level, moisture content, incubation period, temperature, and supplementary nitrogen and carbon sources were evaluated. The results indicated that pH, inoculum level, and moisture content did not significantly vary phytase production. However, different incubation periods, incubation temperatures, nitrogen sources, and carbon sources changed the phytase production significantly. The ideal and economic conditions for phytase production consisted of a normal moisture content (79%) of potato waste, 1.0 ml inoculum size, and normal pH 6.1 at room temperature for 144 h incubation time. The highest phytase activity (5.17 ± 0.82 U/g ds) was obtained under the aforementioned optimized conditions. When (NH4)2SO4 was used as a nitrogen source in the substrate, the phytase activity increased to 12.93 ± 0.47 U/g ds, which was a 2.5-fold increase compared to the control treatment. This study proposed a novel and economical way to convert food processing waste to highly valuable products and investigated the optimal conditions of the production of phytase during SSF in potato waste.