Recently, Pickering emulsions have been considered as an efficient method to maintain and protect the functional properties of essential oils against the harsh conditions. In this research, the encapsulation of d-limonene, as an aromatic component with several distinct properties, was conducted through optimizing the production of Pickering emulsions stabilized by chitosan nanoparticles (CSNPs) and using the response surface methodology; independent variables were different concentrations of CSNPs (0.43, 0.25, and 0.07% w/v) and ratio of d-limonene to Pickering emulsions (5, 15, and 25%). The stability of the emulsions increased at higher contents of the CSNPs. By increasing the concentration of CSNPs and ratio of d-limonene to Pickering emulsion, viscosity of Pickering emulsions was considerably increased. Considering the chemical interactions, thermal behaviors, and crystallinity of samples, CSNPs can be used as an appropriate stabilizer for d-limonene-loaded emulsions and a food grade delivery carrier for the bioactive compounds.
Read full abstract