Abstract

To develop edible delivery systems suitable for food applications, regulations require that solvents and ingredients are either generally recognized as safe or listed by the Food and Drug Administration as processing aids. In this work, we studied a food grade polymer-corn zein, a category of alcohol-soluble proteins, as the carrier material for microencapsulating bioactives. Zein is insoluble in aqueous solutions; zein-based delivery systems may thus maintain the integrity in aqueous food products during processing and storage. Three alcohols, i.e., ethanol, methanol, and isopropanol, with an appropriate amount of water were used to dissolve zein. A supercritical anti-solvent process was applied to synthesize micro- and nanoparticles of zein for edible delivery systems of bioactive compounds. We studied critical variables during the particle formation: polymer concentration, CO2 flow rate, and co-solvent chemistry. Particles were produced only when mass transfer was fast enough that the co-solvent in the atomized droplets could be extracted by the reservoir CO2 and polymers could nucleate and grow into particles. Manipulation of the above variables enabled the production of micro- and nanoparticles, which can be used as bases for microencapsulating bioactives. Our results demonstrated promising applications of the supercritical anti-solvent technology to synthesize food grade delivery systems of bioactive food ingredients that can enhance the healthfulness, safety, and quality of food products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.