Micronutrient deficiencies are a critical factor in the development of obesity. This work aimed to determine the Se and Zn bioaccessibility on biofortified chickpea flour and evaluate their impact on the antioxidant and anti-inflammatory activities. The greatest increase (235 %) in isoflavones was observed in the ZnSO4-treatment compared to the control. Malonylated-formononetin-glucoside was the major isoflavone (43 %–50 %) found in the treatments. Na2SeO3-treated seeds showed the highest Se accumulation, while the greatest Zn accumulation was found in ZnSO4-treated seeds. Se bioaccesibility followed the order: Germinated Control>ZnSO4 > ZnSeO3 > ZnSO₄ + Na2SeO3 > Na2SeO3, while in the seeds biofortified with Zn salts showed the order: Germinated Control>ZnSeO3 > ZnSO₄ + Na2SeO3 > Na2SeO3 > ZnSO4. All treatments showed antioxidant activity. Na2SeO3-treatment (15.625 μg/mL) showed a significant reduction of 52 % in NO production compared to the Germinated Control. These findings demonstrated the biological value of food biofortification in providing minerals in the diet to combat the oxidative stress characteristic of obesity.