Sprague–Dawley rats (23-day-old) were dosed with TCDD (32 μg/kg) in corn oil or vehicle alone. Equine chorionic gonadotropin (eCG) was injected (5 IU, sc) 24 h later to induce follicular development. Another 24 h later, half of TCDD- or corn oil-treated rats were injected (sc) with 17β-estradiol-cypionate (ECP, at 0.004 to 0.5 mg/kg). Blood and ovaries were collected on expected proestrous (preovulatory period) at 51, 54, and 58 h after eCG injection as well as in the morning after ovulation (72 h after eCG). Serum concentrations of 17β-estradiol (E), progesterone (P), luteinizing hormone (LH), and follicle-stimulating hormone (FSH) were determined by radioimmunoassay. The number of ova shed was measured at 72 h after injection of eCG by irrigating ova from oviducts. During the preovulatory period (∼58 h after eCG injection), a circulating level of 70–100 pg E/ml coincided with LH and FSH surges and later normal ovulation of 10 to 12 ova/rat was observed in controls. However, the same concentration of E was not associated with LH and FSH surges in rats treated with TCDD (32 μg/kg), resulting in reduced ovarian weight gain and reduction of ovulation by 70 to 80% (2–3 ova/rat). Blockage of the gonadotropin surge, reduced ovarian weight gain, and ovulation were all reversed completely by the lowest effective dose of ECP (0.1 mg/kg). At 72 h after eCG, serum P secretion was reduced and serum E levels were significantly increased compared to those of corn oil-treated controls. ECP alone had no effect on serum P levels at any time point, but in rats treated with TCDD and ECP, both the reduction of P (at 58 and 72 h) and the increase in E secretion (72 h) were completely reversed. Further studies confirmed that restoration by ECP of gonadotropin surges and associated ovulation could not be attained until circulating levels of E rose sufficiently high to trigger the LH and FSH surges. The new action threshold of E for inducing gonadotropin surges in rats treated with TCDD (32 μg/kg) was determined to be eight- to 10-fold higher than that in controls. Thus, it is apparent that TCDD decreased the responsiveness of the hypothalamus to E as a feedback inducer of preovulatory gonadotropin secretion.