The study was conducted to assess whether selenium (Se) application modulates fertility to alter grain yield in bread wheat grown under different moisture regimes. Seeds of wheat cultivar Millat-2011 were sown in the plots using a randomized complete block design with three replicates per treatment. After germination, the plants were exposed to six moisture regimes, viz. no irrigation after germination, irrigation at boot stage, irrigations at boot and grain-filling stages, irrigations at crown root, boot and grain-filling stages, irrigations at crown root, boot, heading and grain-filling stages and irrigations at crown root, stem elongation, boot, heading and grain-filling stages. At the heading stage, foliar spray of sodium selenate (0, 2 and 4 mg Se L−1) was done. Withholding water at early growth stages significantly increased oxidative stress and decreased growth and grain yield. Irrespective of moisture regimes, foliar application of Se (2 mg L−1) decreased oxidative stress, modulated photosynthetic pigments and fertility and increased grain yield in wheat. The Se-mediated increase in grain yield was attributed to the increase in chlorophyll and ascorbic acid contents and fertility coupled with decrease of oxidative stress under different moisture regimes. The results could be helpful to manage wheat production in the semi-arid environments.
Read full abstract