To examine the relationship between forest succession following fire and the composition of bird communities, we investigated the vegetation structure, bird population density, foraging behavior and guild structure in bamboo grasslands (11 years since the last fire), pine savanna (41 years), pine woodland (58 years), old-growth hemlock forest (never burned), and old-growth spruce forest (never burned) in the Tatachia area of central Taiwan. Canopy height, total foliage cover, tree density, total basal area of tree, total basal area of snags, foliage height diversity, and tree species richness all increased with successional age. However, shrub cover peaked in intermediate successional stages. The vertical profile of foliage cover was more diverse in later successional forests, which had more breeding bird species and ecological guilds. All the breeding bird species recorded in early and intermediate stages were also found distributed in the late successional forests. Because Taiwan has high precipitation and humidity, and most forest fires in Taiwan are caused by human activities, forest fires and large areas of early successional vegetation were probably rare in the mountain areas of Taiwan prior to the arrival of humans. Therefore, bird species have not had enough time to adapt to areas with early or intermediate successional vegetation. Moreover, late successional forests host all the major plant species found in the early and intermediate stages and have higher foliage height diversity index, which was positively correlated with the bird species richness and bird species diversity index in this study. As a result, all breeding bird species and guilds in the area can be found in late successional forests. Efforts for conserving avian diversity in Taiwan should focus on protecting the remaining native old-growth forests.
Read full abstract