Abstract. The International Reference Ionosphere (IRI) is a widely used empirical ionospheric model based on observations from a worldwide network of ionospheric stations. Therefore, it would be reasonable to expect it to capture long-term changes in key ionospheric parameters, such as foF2 and hmF2 linked to trend forcings like greenhouse gas increasing concentrations and the Earth's magnetic field secular variation. Despite the numerous reported trends in foF2 and hmF2 derived from experimental data and model results, there are inconsistencies that require continuous refinement of trend estimation methods and regular data updates. This ongoing effort is crucial to address the difficulties posed by the weak signal-to-noise ratio characteristic of ionospheric long-term trends. Furthermore, the experimental verification of these trends remains challenging, primarily due to time and spatial coverage limitations of measured data series. Achieving these needs for accurate detection of long-term trends requires extensive global coverage and high resolution of ionospheric measurements together with long enough periods spanning multiple solar cycles to properly filter out variations of shorter terms than the sought trend. Considering these challenges, IRI-modeled foF2 and hmF2 parameters offer a valuable alternative for assessing trends and obtaining a first approximation of a plausible global picture representative of experimental trends. This work presents these global trend patterns, considering the period 1960–2022 using the IRI-Plas 2020 version, which are consistent with other model predictions. While IRI explicitly takes into account the Earth's magnetic field variations, the increase in the concentrations of greenhouse gases appears indirectly through the Ionospheric Global index (IG) which is derived from ionospheric measurements. F2-region trends induced by the first mechanism should be important only around the magnetic equator at the longitudinal range with the strongest displacement, and it should be negligible out of this region. Conversely, trends induced by the greenhouse effect, which are the controversial ones, should be dominant away from the geomagnetic equator and should globally average to negative values in both cases, i.e., foF2 and hmF2. Effectively, these negative global means are verified by trends based on IRI-Plas, even though not for the correct reasons in the hmF2 case. In addition, a verification was performed for more localized foF2 trend values, considering data from nine mid-latitude stations, and a reasonable level of agreement was observed. It is concluded that the IRI model can be a valuable tool for obtaining preliminary approximations of the Earth's magnetic-field-induced long-term changes in foF2 and hmF2, as well as of experimental trends only in the foF2 case. The latter does not hold for hmF2, even if the trends obtained are close to the expected values.
Read full abstract