Despite the development of several Fms-like tyrosine kinase 3 (FLT3) inhibitors that have improved outcomes in patients with FLT3-mutant acute myeloid leukemia (AML), drug resistance is frequently observed, which may be associated with the activation of additional pro-survival pathways, such as those regulated by BTK, aurora kinases (AuroK), and potentially others, in addition to acquired tyrosine kinase domain (TKD) mutations of FLT3 gene. FLT3 may not always be a driver mutation. We evaluated the anti-leukemia efficacy of the novel multi-kinase inhibitor CG-806, which targets FLT3 and other kinases, to circumvent drug resistance and target FLT3 wild-type (WT) cells. The anti-leukemia activity of CG-806 was investigated by measuring apoptosis induction and analyzing the cell cycle using flow cytometry in vitro. CG-806 demonstrated superior anti-leukemia efficacy compared to commercially available FLT3 inhibitors, both in vitro and in vivo, regardless of FLT3 mutational status. The mechanism of action of CG-806 may involve its broad inhibitory profile against FLT3, BTK, and AuroK. In FLT3 mutant cells, CG-806 induced G1 phase blockage, whereas in FLT3 WT cells, it resulted in G2/M phase arrest. Targeting FLT3 and Bcl-2 and/or Mcl-1 simultaneously results in a synergistic pro-apoptotic effect in FLT3 mutant leukemia cells. The results of this study suggest that CG-806 is a promising multi-kinase inhibitor with anti-leukemic efficacy regardless of FLT3 mutational status. A phase 1 clinical trial of CG-806 for the treatment of AML has been initiated (NCT04477291). Key points The multi-kinase inhibitor CG-806 exerts superior anti-leukemic activity in AML, regardless of its FLT3 status. CG-806 triggered G1 arrest in FLT3 mutated cells and G2/M arrest in FLT3 WT cells through the suppression of FLT3/BTK and aurora kinases. Concomitantly targeting FLT3 and Bcl-2 and/or Mcl-1 exerted synergistic pro-apoptotic effects on both FLT3 WT and mutated AML cells.