Characteristic changes in the asymmetric nature of the human brain are associated with neurodevelopmental differences related to autism. In people with autism, these differences are thought to affect brain structure and function, although the structural and functional bases of these defects are yet to be fully characterized. We applied a comprehensive meta-analysis to resting-state functional and structural magnetic resonance imaging datasets from 370 people with autism and 498 non-autistic controls using seven datasets of the Autism Brain Imaging Data Exchange Project. We studied the meta-effect sizes based on standardized mean differences and standard deviations (s.d.) for lateralization of gray matter volume (GMV), fractional amplitude of low-frequency fluctuation (fALFF), and regional homogeneity (ReHo). We examined the functional correlates of atypical laterality through an indirect annotation approach followed by a direct correlation analysis with symptom scores. In people with autism, 85, 51, and 51% of brain regions showed a significant diagnostic effect for lateralization in GMV, fALFF, and ReHo, respectively. Among these regions, 35.7% showed overlapping differences in lateralization in GMV, fALFF, and ReHo, particularly in regions with functional annotations for language, motor, and perceptual functions. These differences were associated with clinical measures of reciprocal social interaction, communication, and repetitive behaviors. A meta-analysis based on s.d. showed that people with autism had lower variability in structural lateralization but higher variability in functional lateralization. These findings highlight that atypical hemispheric lateralization is a consistent feature in autism across different sites and may be used as a neurobiological marker for autism.
Read full abstract