We describe theoretically the generation of higher-order Hermite-Gaussian (HG) pulses by using FM mode-locking with a specific optical filter <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$F_{HGm}({\omega })$ </tex-math></inline-formula> , which is characterized by <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$A_{HGm}({\omega })$ </tex-math></inline-formula> and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$A_{HGm}$ </tex-math></inline-formula> ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${\omega }+{n} {\Omega }_ {m} $ </tex-math></inline-formula> ) with <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${n}=-{\infty } {\sim } {+\infty }$ </tex-math></inline-formula> . Here, <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$A_{HGm}({\omega })$ </tex-math></inline-formula> is the Fourier transformed spectrum of the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$m$ </tex-math></inline-formula> th HG pulse <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$a_{HGm}(t)$ </tex-math></inline-formula> in the time domain, and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${\Omega }_ {m} $ </tex-math></inline-formula> is the fixed angular phase modulation frequency. To prepare each filter function <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$F_{HGm}({\omega })$ </tex-math></inline-formula> for generating stable HG pulses, we newly developed a T-M map method to make it possible to choose an appropriate combination of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$M_{PM}$ </tex-math></inline-formula> and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$T$ </tex-math></inline-formula> . By selecting their suitable combinations, we successfully generated <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$m= 1, 2, 3, 5$ </tex-math></inline-formula> , and 10 HG pulses. <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$m= 2, 4$ </tex-math></inline-formula> , <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$6 {\ldots }$ </tex-math></inline-formula> , namely even numbered HG pulses, have a center frequency mode whereas 1, 3, <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$5 \ldots $ </tex-math></inline-formula> odd numbered HG pulses do not. Finally, we generated dark and bright HG pulses, where we showed that four kinds of HG pulses, which we called positive bright, positive dark, negative bright, and negative dark HG pulses, could be obtained with four combinations of ±HG pulses and ± rectangular pulses. According to T-M map analyses, a condition of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$M_{PM}{\not =}2.4$ </tex-math></inline-formula> was mandatory for these pulses except for bright even HG pulses such as <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$a_{HG{0}}{}^{pb}(t)$ </tex-math></inline-formula> , <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$a_{HG{2}}{}^{pb}(t)$ </tex-math></inline-formula> , <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$a_{HG{4}}{}^{pb}(t), {\ldots }$ </tex-math></inline-formula> since they require a center mode with a large amplitude. This is in contrast to pure HG pulse generation.