The article concerns the production of lightweight geopolymer concretes based on raw materials from alkali-activated waste, which is consistent with the doctrine of sustainable construction. Fly ash, which is the main component of these geopolymer composites, constitutes energy waste and causes lower emissions of greenhouse gases and other pollutants than traditional cement. The article presents the optimisation of the geopolymer concrete recipe with different dosages of fly ash (200, 300, 400, 500, 600 and 700 kg/m3) and two recipes, the first of which is based on the use of fly ash aggregate, the largest fraction of which was subjected to surface impregnation, and the second one is based on the use of aggregate without any impregnation. Both recipes use an alkaline solution for alkaline activation with a concentration of 6 mol/dm3. Compressive strength tests and apparent density were carried out on the samples. The adequacy of the use of surface impregnation has been demonstrated in the case of low fly ash content (<500 kg/m3), and the optimal recipe based on fly ash in the amount of 600 kg/m3 was indicated.