This paper proposes an optimized flux weakening (FW) control strategy for interior permanent-magnet synchronous electric motor to address the critical issues that could occur under torque setpoint transition in flux weakening region, due, for example, to an emergency braking. This situation is typical in electric vehicles where the electrical machines operate over a wide speed range to reach high power density and avoid gearboxes. Two modified traditional flux weakening strategies are proposed in this paper to improve torque control quality during high speed torque transition. The proposed modified control strategies were validated both by Matlab/Simulink simulations, modeling the power train of a light vehicle application, and extensive experimental tests on a dedicated test bench.