Five fully-cored and wire-line logged stratigraphic bores have been drilled by the Queensland Department of Mines, relatively close to producing oil fields in the Eromanga Basin, south-west Queensland. Correlations between the stratigraphic bores and petroleum wells have established lithologic control in an area where lithostratigraphy is interpreted mainly from wire-line logs. The Eromanga Basin sequence below the Wallumbilla Formation has been investigated, and a uniform lithostratigraphic nomenclature has been applied; in the past, an inconsistent nomenclature system was applied in different petroleum wells.Accumulation of the Eromanga Basin sequence was initiated in the early Jurassic by major epeirogenic downwarping; in the investigation area the pre-Eromanga Basin surface consists mainly of rocks comprising the Thargomindah Shelf and the Cooper Basin. The lower Eromanga Basin sequence in the area onlaps the Thargomindah Shelf and thickens relatively uniformly to the north-west. The sequence comprises mainly Jurassic/Cretaceous terrestrial units in which vertical and lateral distribution is predominantly facies-controlled. These are uniformly overlain by the mainly paralic Cadna-owie Formation, signalling the initiation of a major Cretaceous transgression over the basin.The terrestrial sequence over most of the area comprises alternating coarser and finer-grained sedimentary rocks, reflecting major cyclical changes in the energy of the depositional environment. The Hutton Sandstone, Adori Sandstone and 'Namur Sandstone Member' of the Hooray Sandstone comprise mainly sandstone, and reflect high energy fluvial depositional environments. Lower energy fluvial and lacustrine conditions are reflected by the finer-grained sandstone, siltstone and mudstone of the Birkhead and Westbourne Formations, and 'Murta Member' of the Hooray Sandstone. Similar minor cycles are represented in the 'basal Jurassic' unit. The Algebuckina Sandstone, recognised only in the far south-west of the investigation area, comprises mainly fluvial sandstones.
Read full abstract