Mathematical and computer modeling of the flutter of elements and units of the aircraft design is an actual scientific problem; its study is stimulated by the failure of aircraft elements, parts of space and jet engines. In view of the complexity of the flutter phenomenon of aircraft elements, simplifying assumptions are used in many studies. However, these assumptions, as a rule, turn out to be so restrictive that the mathematical model ceases to reflect the real conditions with sufficient accuracy. Therefore, results of theoretical and experimental studies are in bad agreement.At present, the problem of panel flutter is very relevant. Improvement of characteristics of military and civil aircraft inevitably requires reducing their weight, and consequently, the rigidity of paneling, which increases the possibility of a panel flutter. The concept of creating the aircraft with a variable shape, which would inevitably lead to a reduction in paneling thickness are actively discussed. Finally, the use of new materials and, in particular, composites, changes physical properties of the panels and can also lead to a flutter.The above-mentioned scientific problem gives grounds to assert that the development of adequate mathematical models, numerical methods and algorithms for solving nonlinear integral-differential equations of dynamic problems of the hereditary theory of viscoelasticity is actual.In connection with this, the development of mathematical models of individual elements of aircraft made of composite material is becoming very important.Generalized mathematical models of non-linear problems of the flutter of viscoelastic isotropic plates, streamlined by a supersonic gas flow, are constructed in the paper on the basis of integral models. To study oscillation processes in plates, a numerical algorithm is proposed for solving nonlinear integro-differential equations with singular kernels. Based on the developed computational algorithm, a package of applied programs is created. The effect of the singularity parameter in heredity kernels on the vibrations of structures with viscoelastic properties is numerically investigated. In a wide range of changes in plate parameters, critical flutter velocities are determined. Numerical solutions of the problem of viscoelastic plate flutter are compared for different models. It is shown that the most adequate theory for investigating a wide class of problems of the hereditary theory of viscoelasticity is the geometric nonlinear Kirchhoff-Love theory with consideration of elastic waves propagation. It is established that an account of viscoelastic properties of plate material leads to 40-60% decrease in the critical flutter velocity.