Polyfluoroalkyl substances can be biotransformed in natural or engineered environmental systems to generate perfluoroalkyl acids (PFAAs). Data are needed to support the development of biotransformation pathway prediction tools that simulate biotransformation pathways of polyfluoroalkyl substances in specific environmental systems. The goal of this study was to experimentally evaluate the biotransformation of eight structurally similar fluorotelomer acids to identify biotransformation products and propose biotransformation pathways. We selected six fluorotelomer carboxylic acids and two fluorotelomer sulfonic acids and employed a biotransformation test system in which batch reactors are seeded with aerobic wastewater microbial communities. We identified 111 biotransformation products among the eight parent compounds, 58 of which represent unique chemical structures. Many of the biotransformation products are the result of apparent dehydrogenation, monohydroxylation, alcohol oxidation, decarboxylation, HF-elimination, and reductive defluorination biotransformations. We use these data to propose cascading biotransformation pathways that are regulated by integrated and synergistic α-oxidation-like, β-oxidation-like, and defluorination biotransformations that result in the formation of terminal PFAAs of varying chain length. Our data provide a comprehensive view on the aerobic biotransformation of fluorotelomer acids and our results can be used to support the ongoing development of biotransformation pathway prediction tools.
Read full abstract