Metallic masking materials are promising candidates for plasma-based pattern transfer into low-k materials for fabricating integrated circuits. Improving etching selectivity (ES) between the low-k and hardmask material requires a fundamental understanding of material erosion in fluorocarbon (FC) plasmas. The authors have previously reported on the erosion mechanism and plasma parametric dependencies of Ti etch in FC discharges. The present work focuses on elucidating differences in the erosion behavior between Ti and TiN hardmasks. The authors studied erosion of Ti, TiN, and organosilicate glass (OSG), a reference low-k material, in CF4/Ar and C4F8/Ar plasmas. Changes in surface composition, FC surface reaction layer thicknesses, erosion rates, and corresponding ES were established by x-ray photoelectron spectroscopy and in situ ellipsometry. The authors found that the erosion stages and plasma parameter dependent surface compositions were similar for Ti and TiN. The previously established dependence of T...
Read full abstract