The extensive use of fluoride in agriculture, industry, medicine, and daily necessities has raised growing concerns about fluoride residue. To date, real-time visual detection and efficient removal of fluoride ions from water remain greatly desirable. Herein, nano-CAU-10-NH2@RhB is introduced as a ratiometric fluorescent probe and efficient scavenger for the intelligent detection and removal of fluoride ions. CAU-10-NH2@RhB is readily obtained through one-pot synthesis and exhibits high sensitivity and selectivity for real-time fluoride ion detection, with a naked-eye distinguishable color change from pink to blue. A portable device for point-of-care testing was developed based on color hue analysis readout using a smartphone. A quantitative response was achieved across a wide concentration range, with a detection limit of 54.2 nM. Adsorption experiments suggest that nano-CAU-10-NH2@RhB serves as an efficient fluoride ion scavenger, with a fluoride adsorption capacity of 49.3 mg/g. Moreover, the mechanistic study revealed that hydrogen bonds formed between fluoride ions and amino groups of CAU-10-NH2@RhB are crucial for the detection and adsorption of fluoride ions. This analysis platform was also used for point-of-care quantitative visual detection of fluoride ions in food, water, and toothpaste.
Read full abstract