The herein-reported oxyfluoridometallate salts were synthesized and structurally characterized during the studies of the Lewis acidity of MOF4 (M = Mo, W) with various fluoride ion donors (RbF, CsF, TlF, AgF, SrF2, BaF2, PbF2) in different solvents (aqHF 48%, aHF, BrF3, ClF3). Phase-pure MoOF4 was either synthesized by hydrolysis of MoF6 with SiO2 in anhydrous HF (aHF) or by reactions of BrF3 with MoO2 or MoO3, respectively. The compound was characterized by infrared and Raman spectroscopy, solid-state quantum-chemical calculations, as well as powder and single-crystal X-ray diffraction. MoOF4 reacted with PbF2 in aHF forming Pb[MoOF5]2, while under comparable conditions, WOF4 formed Pb3[WOF5]4F2, containing the [WOF5]- anion. Salts containing such [MoOF5]- anions were also directly obtained from reactions of BrF3, MoO3, and AF2 (A = Sr, Ba), while with AgF, the compound Ag[Mo2O2F9] was observed. ClF3 reacted with MoO3 to form [ClOF2][Mo3O3F13]. Carrying out similar reactions in aqueous HF (aqHF) in autoclaves under hydrofluorothermal conditions leads to O-richer compounds with the composition A[MoO2F4] (A = Sr, Ba). With RbF or Tl2(CO3), the compounds A[MoO2F3] (A = Rb, Tl) were obtained. With CsF reduction to Mo(V) occurred as Cs2[MoVOF5] was formed. We report on similarities and differences within the respective anions and within the crystal structures of these compounds.
Read full abstract