Fluorescence lifetime imaging microscopy is sensitive to molecular interactions and environments. In homo-dyne frequency-domain fluorescence lifetime imaging microscopy, images of fluorescence objects are acquired at different phase settings of the detector. The detected intensity as a function of detector phase is a sinusoidal function that is sensitive to the lifetime of the fluorescent species. In this paper, the theory of phase-sensitive fluorescence image correlation spectroscopy is described. In this version of lifetime imaging, image correlation spectroscopy analysis (i.e., spatial autocorrelation) is applied to successive fluorescence images acquired at different phase settings of the detector. Simulations of different types of lifetime distributions reveal that the phase-dependent density of fluorescent objects is dependent on the heterogeneity of lifetimes present in the objects. We provide an example of this analysis workflow to a cervical cancer cell stained with a fluorescent membrane probe.
Read full abstract