Abstract
Membrane trafficking is essential for all cells, and visualizing it is particularly useful for studying neuronal functions. Here we report the synthesis, characterization, and application of several membrane- and pH-sensitive probes suitable for live-cell fluorescence imaging. These probes are based on a 1,8-naphthalimide fluorophore scaffold. They exhibit a solvatochromic effect, and one of them, ND6, shows a substantial fluorescence difference between pH 6 and 7. The solvatochromic effect and pH-sensitivity of those probes are explained using quantum chemical calculations, and molecular dynamics simulation confirms their integration and interaction with membrane lipids. For live-cell fluorescence imaging, we tested those probes in a cancer cell line (MCF7), cancer spheroids (MDA-MB-468), and cultured hippocampal neurons. Confocal imaging showed an excellent signal-to-noise ratio from 400:1 to about 1300:1 for cell membrane labeling. We applied ND6 during stimulation to label nerve terminals via dye uptake during evoked synaptic vesicle turnover. By ND6 imaging, we revealed cholesterol's multifaced role in replenishing synaptic vesicle pools. Our results demonstrate these fluorescent probes' great potential in studying membrane dynamic and synaptic functions in neurons and other secretory cells and tissues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.