The cold-pressed oil from Japanese quince seeds (JQSO) is notable for its favorable fatty acid profile, low oxidation rate, and bioactive compounds like antioxidants, sterols, and carotenoids. This study offers a detailed molecular-level physical characterization of JQSO and its minor components using differential scanning calorimetry (DSC), Langmuir monolayer studies, and various spectroscopic methods, including UV–vis absorption, fluorescence, and FTIR. DSC analysis identified five peaks related to triglyceride (TG) fractions and provided insights into the melting and crystallization behavior of JQSO. The Langmuir monolayer studies revealed high compressibility, indicative of superior emulsification properties. Viscoelastic modulus measurements suggested strong intermolecular interactions, contributing to the oil’s resilience under stress—an attribute typical of oils high in saturated or monounsaturated fatty acids. Spectroscopic methods confirmed the presence of phenolic acids, tocopherols, carotenoids, and their derivatives. The total fluorescence spectra highlighted prominent peaks at 290 nm/330 nm and 360 nm/440 nm, while the total synchronous fluorescence spectra revealed key excitation–emission regions (10–50 nm/300 nm and 40–140 nm/360 nm), corroborating the presence of tocopherols, phenols, polyphenols, flavones, and carotenoids. No evidence of chlorophyll was detected. The ATR-FTIR spectra validated the presence of fatty acids and triacylglycerols, emphasizing a high degree of esterification and the dominance of unsaturated fatty acids in oil structures. The methods used provided the opportunity to perform a label-free, fast, and reliable determination of the properties of JQSO. The findings confirmed that crude, cold-pressed JQSO retains its valuable bioactive components, aligning with previous research on its chemical and physical properties.
Read full abstract