Structural transitions involving shape changes play an important role in cellular physiology and enhance the bioavailability of the natural food like curcumin in surfactant aggregates. In this work, we have studied the localization, dynamics and stability of curcumin in various miceller assemblies using a combination of absorbance and fluorescence spectroscopic approaches. The measurements of absorption and fluorescence spectra of curcumin revealed that the nature of interactions of ionic and nonionic surfactants and the glycosphingolipid, GM1 with curcumin is significantly different with surfactant concentrations. At low concentrations of SDS and the GM1 the head group of SDS and GM1 binds to the central β-diketone group of curcumin to form SDS-curcumin or GM1-curcumin complexes. At high concentrations, both formed micelles with curcumin completely solubilized inside. Cucurmin is solubilized in the stern layer of SDS micelles. Compared to spherical micelles, rod shaped micelles allow more curcumin to bind through hydrophobic interactions indicated by higher absorption and fluorescence, enhanced partition coefficient and stability. Whereas curcumin associates with GM1 micelles with lower partition coefficient, solubility and remain closer to aqueous phase decreasing its bioavailability and stability. While cucurmin is solubilized in the palisade layer of deoxycholate and octyl glucopyranoside micelles through the alkyl chains providing more hydrophobic microenvironment to curcumin with enhanced stability and bioavailability. Graphical abstract Schematic diagram of the two different types of detergent micelles and larger GM1 micelles.
Read full abstract